Search results for "H2O2-sensitive pore"

showing 1 items of 1 documents

Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores

2015

We describe the fabrication of a chemical-sensitive nanofluidic device based on asymmetric nanopores whose transport characteristics can be modulated upon exposure to hydrogen peroxide (H2O2). We show experimentally and theoretically that the current-voltage curves provide a suitable method to monitor the H2O2-mediated change in pore surface characteristics from the electronic readouts. We demonstrate also that the single pore characteristics can be scaled to the case of a multipore membrane whose electric outputs can be readily controlled. Because H2O2 is an agent significant for medical diagnostics, the results should be useful for sensing nanofluidic devices.

Medical diagnosticFabricationMaterials scienceSurface PropertiesIonic bondingNanotechnologyIonNernst-Planck equationsNanoporeschemistry.chemical_compoundGeneral Materials ScienceAminesHydrogen peroxideIon transporterIonsIon TransportCurrent rectificationPolyethylene TerephthalatesH2O2-sensitive porefood and beveragesHydrogen PeroxideModels TheoreticalNanoporeMembranechemistryFISICA APLICADAAsymmetric nanoporesChemical functionalizationACS Applied Materials & Interfaces
researchProduct